RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

FIRST YEAR [2017-20]

B.A./B.Sc. FIRST SEMESTER (July – December) 2017 Mid-Semester Examination, September 2017

Date : 12/09/2017

COMPUTER SCIENCE (Honours)

 $\label{eq:time:local_pm} \mbox{Time} : 11 \mbox{ am} - 1 \mbox{ pm} \qquad \qquad \mbox{Paper} : \mbox{I} \qquad \qquad \mbox{Full Marks} : 50$

[Use a separate Answer Book for each group]

Group - A

(Answer any three questions) [3×5]			
1.	a) b)	Define algorithm. State the properties of an algorithm.	[2] [3]
2.	a) b)	Find the 10's complement of $(935)_{11}$. Convert the decimal number $(250 \cdot 5)_{10}$ to base 4 and base 7.	[1] [2+2]
3.	a) b)	Represent the decimal number $(8620)_{10}$ — (i) in BCD, (ii) in excess-3 code and (iii) in 2-4 code. Prove that $x \cdot x = x$.	-2-1 [1+1+1] [2]
4.	a) b)	What is the difference between canonical form and standard form? Which form is prefer when implementing a Boolean function with gates? Convert the following to the other canonical form $F(A,B,C,D) = \Pi(0,1,2,3,4,6,12)$.	rable [2+0·5] [2·5]
$\frac{\mathbf{Group} - \mathbf{B}}{(Answer \underline{any five} questions)} $ [5×7]			
5.	a) b)	Implement the function $F(a,b,c) = \sum m(1,3,5,6)$ using a 4:1 MUX. Multiply (9) ₁₀ and (-3) ₁₀ using Booth's algorithm.	[3] [4]
6.	a) b)	Write the control steps for the execution of the instruction ADD R4, R5, R6. Implement a full subtractor using a suitable decoder.	[4] [3]
7.	a)b)c)	Differentiate between direct mapping and set-associative mapping of cache memory. How master-slave flip-flop is useful in solving race around condition? What is the use of 'Tag' field of main memory address in cache mapping?	[2·5] [2·5] [2]
8.	a) b)	Realize a 16:1 MUX using necessary number of 8:1 MUXs and also explain its operation. Differentiate between dataflow and control-flow architecture.	[2·5+2·5] [2]
9.	a)b)c)	Explain: Significand underflow. Design logic circuit of a 3-bit PISO shift register. Differentiate between DRAM and SRAM.	[2] [3] [2]
10.	a)b)c)d)	How effective address of the operand is calculated in index addressing mode? What is the advantage of using edge triggered flip-flop? Why associative memory is costly? Represent (-12) ₁₀ in 12-bit 1's complement representation.	[2] [2] [1·5] [1·5]

11. a) "A decoder with an enable input is called a demultiplexer" —Explain. [2]

b) Explain how snooping hardware is useful in solving cache coherence problem. [3.5]

c) What is rotational latency? [1·5]

____×___